

    
      
          
            
  \anchor mdsplus_manual

\attention
The MDSplus source documentation is in beta stage, for a complete general
description of MDSplus please refer to the Mdsplus
site [http://www.mdsplus.org].

\htmlonly


A pdf version of this manual is available here: MDSplus manual


 
\endhtmlonly
Introduction

Welcome to MDSplus software manual. MDSplus is a set of software tools for data
acquisition and storage and a methodology for management of complex scientific
data. MDSplus allows all data from an experiment or simulation code to be
stored into a single, self-descriptive, hierarchical structure. The system was
designed to enable users to easily construct complete and coherent data sets.
The MDSplus programming interface contains only a few basic commands,
simplifyng data access even into complex structures. Using the client/server
model, data at remote sites can be read or written without file transfers.
MDSplus includes x-windows and java tools for viewing data or for modifying or
viewing the underlying structures. Developed jointly by the Massachusetts
Institute of Technology, the Fusion Research Group in Padua, Italy (Istituto
Gas Ionizzati and Consorzio RFX), and the Los Alamos National Lab, MDSplus is
the most widely used system for data management in the magnetic fusion energy
program. It is currently installed at over 30 sites spread over 4 continents.
The MDSplus developers hope that MDSplus may prove to be a valuable tool for
research at your site.


Index of MDSplus manuals

This is the main MDSplus manual, it aims to provide an guide to the MDSplus
software components. The following is a table of the currently documented
components, please note that some manuals are yet in development stage so the
overall software coverage is actually limited. To get a more complete reference
of the MDSplus tools and of the components not shown here please refer to the
Mdsplus site [http://www.mdsplus.org].

| Brief description          |  Reference manual                         |
|:—————————|——————————————-|
| \ref lib_mdsshr            | \subpage mdsshr_manual                    |
| \ref lib_tdishr            |     not written yet, ref to Mdsplus site  |
| \ref lib_treeshr           |     not written yet, ref to Mdsplus site  |
| \ref lib_mdsip             | \subpage mdsip_manual                     |
| \ref lib_mdsobjects C++    | \subpage mdsobjects_cpp_manual            |
| \ref lib_mdsobjects Python | \subpage mdsobjects_py_manual             |
| \ref lib_mdsobjects Java   | \subpage mdsobjects_java_manual           |
| MDSlib manual              | \subpage mdslib_manual                    |
| Java Scope signal viewer   | \subpage javascope_manual                 |


  
    
    Index
    

    
 
  

    
      
          
            

Index



 




          

      

      

    

  

  
    

    MDSplus data types {#data_types}
    

    
 
  

    
      
          
            
  
MDSplus data types {#data_types}

The followings are the MDSplus generic types

@subpage dt_integer
, @subpage dt_float
, @subpage dt_string
, @subpage dt_call
, @subpage dt_dimension
, @subpage dt_conglom
, @subpage dt_action
, @subpage dt_dispatch
, @subpage dt_function
, @subpage dt_ident
, @subpage dt_method
, @subpage dt_range
, @subpage dt_routine
, @subpage dt_signal
, @subpage dt_window
, @subpage dt_with_error
, @subpage dt_with_units

Any data types used in MDSplus framework are identified by a type id …



Data Types for Numbers

\latexonly { \footnotesize \endlatexonly

| Name                      | Description          |
|——————————-|————————–|
| \ref dt_integer “DTYPE_BU” | Unsigned Byte (8-bit)       |
| \ref dt_integer “DTYPE_WU” | Unsigned Word (16-bit)      |
| \ref dt_integer “DTYPE_LU” | Unsigned Long (32-bit)      |
| \ref dt_integer “DTYPE_QU” | Unsigned Quadword (64-bit)  |
| \ref dt_integer “DTYPE_OU” | Unsigned Octaword (128-bit) |
| \ref dt_integer “DTYPE_B”  | Byte (8-bit)                |
| \ref dt_integer “DTYPE_W”  | Word (16-bit)               |
| \ref dt_integer “DTYPE_L”  | Long (32-bit)               |
| \ref dt_integer “DTYPE_Q”  | Quadword (64-bit)           |
| \ref dt_integer “DTYPE_O”  | Octaword (128-bit)          |
| \ref dt_float “DTYPE_F”   | 32-bit Vax F_FLOAT           |
| \ref dt_float “DTYPE_D”   | 64-bit Vax D_FLOAT           |
| \ref dt_float “DTYPE_G”   | 64-bit Vax G_FLOAT           |
| \ref dt_float “DTYPE_FC”  | 32-bit Vax F_FLOAT complex   |
| \ref dt_float “DTYPE_DC”  | 64-bit Vax D_FLOAT complex   |
| \ref dt_float “DTYPE_GC”  | 64-bit Vax G_FLOAT complex   || \ref dt_float “DTYPE_FS”  | 32-bit IEEE Float            |
| \ref dt_float “DTYPE_FT”  | 64-bit IEEE Float            |
| \ref dt_float “DTYPE_FSC” | 32-bit IEEE Float complex    |
| \ref dt_float “DTYPE_FTC” | 64-bit IEEE Float complex    |

\latexonly } \endlatexonly



Data Types for other MDSplus descriptors

\latexonly { \footnotesize \endlatexonly

| Name                                | Description                   |
|—————————————–|———————————–|
| \ref dt_string “DTYPE_T”                | Text                              |
| \ref dt_action “DTYPE_ACTION”           | Action definition                 |
| \ref dt_call “DTYPE_CALL”               | Call function                     |
| \ref dt_conglom “DTYPE_CONGLOM”         | Conglomerate / Device             |
| \ref dt_dimension “DTYPE_DIMENSION”     | Dimension definition              |
| \ref dt_dispatch “DTYPE_DISPATCH”       | Dispatch information              |
| \ref dt_function “DTYPE_FUNCTION”       | Function reference                |
| \ref dt_ident “DTYPE_IDENT”             | MDSplus identifier “Ken variable” |
| \ref dt_method “DTYPE_METHOD”           | Invoke device method              |
| DTYPE_NID                               | 32-bit Node Identifier            |
| DTYPE_PARAM                             | Parameter                         |
| DTYPE_PATH                              | Node specifier (Path)             |
| \ref dt_range “DTYPE_RANGE”             | Range                             |
| \ref dt_routine “DTYPE_ROUTINE”         | Routine                           |
| \ref dt_signal “DTYPE_SIGNAL”           | Signal                            |
| \ref dt_window “DTYPE_WINDOW”           | Window                            |
| \ref dt_with_error “DTYPE_WITH_ERROR”   | Attach error to value             |
| \ref dt_with_units “DTYPE_WITH_UNITS”   | Attach units to value             |

\latexonly } \endlatexonly




          

      

      

    

  

  
    

    Actions {#dt_action}
    

    
 
  

    
      
          
            
  
Actions {#dt_action}

MDSplus provides an action data type used for describing actions to be
dispatched to action servers during a normal experiment cycle. An action
consists of 5 parts but the current implementations of action dispatching only
refernce the first three parts, a dispatch part, a task part and an errorlogs
part (OpenVMS only). The dispatch part (See: DTYPE_DISPATCH) includes
information such as which server should perform the task, when during the
course of the shot cycle it should be executed, what MDSplus event should be
issued when the task completes. The task part describes what is to be done when
the action is executed. There are a couple different types of task types
currently support (See: DTYPE_METHOD and DTYPE_ROUTINE). The errorlogs part
is implemented only on OpenVMS. If this part contains a string consisting of a
comma delimited list of user accounts, each user on the list will receive a
OpenVMS cluster-wide broadcast message if this action fails during execution.
The remaining parts were originally defined to hold statistics from the
execution of the action but since this would require rewriting the action data
(which is usually considered setup information and not writable in the pulse
files) this feature was never used. This unused parts are called
completion_message and performance.

_MYACTION = BUILD_ACTION(
         BUILD_DISPATCH(2,"CAMAC_SERVER","STORE",50,"A12_42_DONE"),
         BUILD_METHOD(*,"STORE",A12_42)
        )
_DISPATCH = DISPATCH_OF(_MYACTION)
_TASK = TASK_OF(_MYACTION)





The above example builds an action item consisting of a dispatch item and a
metho item. The dispatch item is specifying that this action should be run on
the action server called “CAMAC_SERVER” during the “STORE” phase using
sequential scheduling, executed after all actions with sequence numbers between
1-49 have completed. When this action completes the dispatcher should issue the
MDSplus event called “A12_42_DONE”). The task portion of the action is a
method item specifying the “STORE” action is to be performed on the A14_42
(tree node) device.

Normally actions are defined using tools such as the “traverser” and “actions”
applications and the contents of actions are referenced by action dispatchers
so you rarely need to build or access the parts of actions, dispatch and method
items by hand.

The following table lists some of the TDI functions available for creating and
accessing actions:

\latexonly { \tiny \endlatexonly

| Function            | Description                          |
|————————-|——————————————|
| BUILD_ACTION           | Build an action structure                |
| ERRORLOGS_OF           | Return the errorlogs part of an action   |
| COMPLETION_MESSAGE_OF | Return the completion part of an action  |
| DISPATCH_OF            | Return the dispatch part of an action    |
| MAKE_ACTION            | Make an action structure                 |
| PERFORMANCE_OF         | Return the performance part of an action |
| TASK_OF                | Return the task part of an action        |

\latexonly } \endlatexonly




          

      

      

    

  

  
    

    Call {#dt_call}
    

    
 
  

    
      
          
            
  
Call {#dt_call}

MDSplus provides a call data type used for describing references to external
functions. The MDSplus expression evaluator has the ability to call external
functions in shared libararies or DLL’s. The call datatype describes the type
of the return value of the function, the name of the library or DLL where the
function can be found, the name of the function and the list of arguments to
present to the function when calling it. The expression evaluator in MDSplus
has syntax for easily building instances of this data type as will as builtin
functions for constructing them. The call to the external function occurs when
the expression containing a call item is evaluated. The following example shows
an example of calling an external function:

mysharedlib->myfunction(42)





The code above is the most common form of the function reference. When
evaluated, the function called “myfunction” found in the library “mysharedlib”
will be called with one argument, 42. The return value of the function is
assumed to be a 32-bit signed integer.

build_call(kind(1),“mysharedlib”,“myfunction”,42)





The above code creates the same function as the previous example but uses the
build_call function to construct the call item. The behavior would be
identical to the previous example.

_x=zero(100)
build_call(kind(1e6),"/home/twf/mylibraries/libmysharedlib",“myfunction2”,val(42),ref(_x))





This example builds a similar call but in this case the function return is
handled as a floating point value and the “myfunction2” function is called with
two arguments, 42 passed by value and a TDI variable passed by reference. This
example uses the full file specification (without the file type).

MDSplus uses operating system specific rules to locate shared libraries when
the full file specification of the library is not given. On OpenVMS, the system
would first look for a logical name matching the name of the library and if one
is found it would activate the image defined by the logical name. If their is
no such logical name, the system would then look in the directory search path
defined by SYS$SHARE for the library. The file type for shared libraries on
OpenVMS is “.EXE”. On Unix systems the system looks for a library path
environment variable such as LD_LIBRARY_PATH or SHLIB_PATH and looks in
these directories. If there is no such environment variable, the system looks
in system library directories (usually /usr/lib or /usr/local/lib) for the
shared library. The file type for shared libraries on Unix is generally
“.so”,”.sl” or sometimes “.a”. On Windows systems, the system looks for shared
libraries in the directory where the application was run or in the directory
list specified by the “PATH” environment variable. The file type of shared
libraries on Windows is “.dll”.

The following table lists some of the TDI functions available for creating and
accessing the call function:

\latexonly { \tiny \endlatexonly

| Function | Description                                   |
|————–|—————————————————|
| BUILD_CALL  | Build a call structure                            |
| IMAGE_OF    | Return the image or shared library part of a call |
| ROUTINE_OF  | Return the routine part of a call                 |
| MAKE_CALL   | Make a call structure                             |

\latexonly } \endlatexonly




          

      

      

    

  

  
    

    Conglomerate (aka Device) {#dt_conglom}
    

    
 
  

    
      
          
            
  
Conglomerate (aka Device) {#dt_conglom}

MDSplus provides an conglomerate data type used for describing data acquisition
or analysis devices. A device in MDSplus is implemented as a collection of
adjacent tree nodes (or a conglomerate). The first node (located at the top of
the node structure of this collection) contains a conglomerate data type. The
conglomerate data type is a structure containing an image part, a model part, a
name part and a qualifiers part. MDSplus implements device support by providing
a mechanism for performing “methods” on devices. When a device method is
performed on a device in an MDSplus tree either through an action or using the
TCL command DO/METHOD, MDSplus invokes a procedure determined by the
information in the head node of the device which contains a conglomerate data
type. If there is an image part of the conglomerate structure, MDSplus will
attempt to call a routine called “model-part””method” in the shared library
specified by the image part. If the routine can not be found, MDSplus will try
to invoke the TDI function called “model-part””method”. Normally, the
conglomerate data is loaded into the head node of a device automatically when
you add it to the tree so you may not need to access this data type directly.

The name part of the device is often a reference to a sub node of the device
which contains the data acquisition module identification such as the CAMAC
module name. This portion of the device is not used during method invokation
and was simply added as a convenience in building tools for gathering
information about device definitions in a tree. The qualifiers part of the
structure could be used by device support for making variant device
implementations. This field along with the name field are generally not used
any longer.

The following shows an example of a conglomerate data type.

TCL> set tree subtree
TCL> dir/full a14

\SUBTREE::TOP

 :A14
      Status: on,parent is on, usage device,readonly
      Data inserted:  3-NOV-1994 14:43:55    Owner: [100,100]
      Dtype: DTYPE_CONGLOM         Class: CLASS_R             Length: 102 bytes
      Model element: 1

 Total of 1 node.

 TCL> decompile a14
 Build_Conglom("MIT$DEVICES", "A14", *, *)

 TCL> do/method a14 store





In the above example we open the subtree (sample tree) and display the
characteristics and contents of the A14 node. It contains a DTYPE_CONGLOM data
record and is the first element of a conglomeration of nodes. The conglomerate
data structure has “MIT$DEVICES” for the image part and “A14” for the model
part and the name and qualifiers parts are empty. When the store method is
performed on this node (or any node which is part of this device), MDSplus
looks for a routine called a14__store in the shared library called MIT$DEVICES
and if found calls it with the node number of the head node and the method
string. If it cannot find this routine or image, it will attempt to invoke the
a14__store tdi function with the same arguments.

The following table lists some of the TDI functions available for creating and
accessing conglomerate data types:

\latexonly { \tiny \endlatexonly

| Function   | Description                              |
|—————-|———————————————-|
| BUILD_CONGLOM | Build a conglomerate structure               |
| IMAGE_OF      | Return the image part of a conglomerate      |
| MAKE_CONGLOM  | Make a conglomerate structure                |
| MODEL_OF      | Return the model part of a conglomerate      |
| NAME_OF       | Return the name part of a conglomerate       |
| QUALIFIERS_OF | Return the qualifiers part of a conglomerate |

\latexonly } \endlatexonly




          

      

      

    

  

  
    

    Dimension Data Type {#dt_dimension}
    

    
 
  

    
      
          
            
  
Dimension Data Type {#dt_dimension}

MDSplus provides a dimension data type which provides a compact mechanism for
expressing signal dimensions (See: DTYPE_SIGNAL). The dimension data type was
implemented as a way to represent data such as the timebase for signals
recorded by data acquisition equipment such as transient recorders. These
devices typically have a clock (either a separate external device or built into
the transient recorder) which tells the device to record a sample into its
internal cyclic memory buffer. In many cases this clock is a single speed clock
which means each clock pulse occurs at a constant delta time from the previous
clock pulse. A transient digitizer has another input called a trigger which
tells the device to stop recording samples (either immediately or after some
number of subsequent clock pulses). If one knows when the clock began running
and the delta time between each clock pulse along with the time the trigger
took place, one could compute the time that each sample in the digitizers
internal memory was recorded. MDSplus could compute these times when storing
the data for the device and store these times along with the data in a signal
however it is much more efficient to store a representation of this timebase
which could be evaluated as needed. This is the purpose of the dimension data
type.

A dimension data type is a structure which has two parts, a window and an axis.
The axis part is a representation of a series of values (i.e. time stamps) and
is generally represented by a DTYPE_RANGE data item. If this was a single speed
clock, for example, the axis would be represented by a range consisting or an
optional start time, an optional end time and a single delta time value. This
range could represent a series of clock pulses which began some time infinitely
in the past and continuing to some time infinitely in the future. The window
portion of the dimention is used to select a set of these infinite stream of
clock pulses that represent those clock pulses which match the samples that
were recorded in the digitizers internal memory. The window portion is usually
represented by a DTYPE_WINDOW data item. A window consists of a start index,
and end index and a value at index 0. For a transient digitizer, the samples in
the memory were recorded at a known number of clock pulses before the trigger
(the start index) and continuing a known number of clock pulses after the
trigger. The time the module was triggered is the value at index 0 part of the
window.

The best way to explain how a dimension works is to give an example. Let us
imagine we had an external clock that just ticks continously every second. If
we hooked this clock to a transient digitizer and told that digitizer to start
recording, every second it would record the voltage level of its inputs into
its circular memory buffer. It would continue to record these samples for ever
until told to stop. We can represent this unbounded time base using a
DTYPE_RANGE data item:

* : * : 1.0





or

BUILD_RANGE(*,*,1.0)





If we asked MDSplus to evaluate this time base we would get an error since it
represents an infinite stream of values with each value being one larger than
the previous value.

Now if the digitizer is configured to stop recording values when it receives a
trigger input it should be possible to compute when each sample in its buffer
was recorded (approximately since in this example we don’t know the exact time
of each clock pulse). If we label the trigger time in this example as time 0.0
and for purposes of illustration say the digitizer can record ten samples, we
can represent the time base using:

_CLOCK = * : * : 1.0
_TRIGGER = 0.0
BUILD_DIM(BUILD_WINDOW(-9,0,_TRIGGER), _CLOCK)





The clock pulses occurring close to the time the module was triggered would be
be times such as …,-19,-18,-17,-16,…,-4,-3,-2,-1,0,1,2,3,… an so on.
Since the device was told to stop recording approximately at the time 0.0, the
ten samples that have been recorded in the digitizers memory would have
occurred at -9,-8,-7,-6,-5,-4,-3,-2,-1,0. These are the values that MDSplus
would return if the above dimension was evaluated.

Of course, there are numerous ways this same information could have been
represented. However, one thing the special about the dimension concept is that
the trigger time and the clock representation does not need to be known when
the dimension item is stored. They can be simply node references to pieces of
information which is stored by other devices which are responsible for
generating the trigger and clocks. The implementation of a transient digitizer
in MDSplus can be implemented independently of trigger devices and clock
devices. It knows only the number of pre-trigger and post-trigger samples it
takes and therefore can store a dimension item with a window indicating the
start index and end index and simply use node references for the trigger and
clock.

The dimension data type can obviously be used for more than just representing
time stamps of data recorded by transient digitizers. This compact
representation can be used for storing dimension information of almost any kind
of signals. The axis portion of the dimension does not have to be a regular
continuous range. It can be an unbounded or bounded range, an simple array of
values or an expression returning a range or array of values. The window
portion of a dimension can be missing if the axis portion is finite.

The dimension data type is very important when you use the MDSplus subscripting
capability. MDSplus signals can be subscripted using bounds expressed in units
of its dimensions. For example:

mysignal[.3:.9]





This would extract the subset of the signal which has dimension values between
.3 and .9. MDSplus subscripting behaves slightly different when subscripting a
signal which as an array of values for the dimension versus a dimension item. A
signal that looks like build_signal(y-values,*,x-values-array) is treated like
a list of discrete values while a signal such as build_signal(y-values, ,
build_dim(,x-values-array)) is treated as a continous signal. If a range
without a delta is used to subscript the former signal it evaluates the range
with the default increment of one and uses the result to pick the discrete
values from the signal. In the latter case, it treats the range as a beginning
and ending and extracts the portion of the signal within this range. In most
cases the latter behavior is desired so you should take care to store signals
using dimension items for the dimensions.

_signal=build_signal([1,2,3,4,5],*,[.1,.2,.3,.4,.5])
_signal[.2:.4]

result = build_signal([2],*,[.2])

_signal=build_signal([1,2,3,4,5],*,
        build_dim(*,[.1,.2,.3,.4,.5]))
_signal[.2:.4]

result = build_signal([2,3,4],*,[.2,.3,.4])





The following table lists some of the TDI functions available for creating or
accessing dimensions:

\latexonly { \tiny \endlatexonly

| Function  | Description                                                      |
|—————|———————————————————————-|
| AXIS_OF      | Return axis portion of dimension                                     |
| BUILD_DIM    | Build a dimension structure                                          |
| BUILD_SIGNAL | Build a signal structure                                             |
| BUILD_WINDOW | Build a window structure                                             |
| DATA          | Evaluates dimension item converting to one of integer, float or text |
| DIM_OF       | Return one of the dimension parts of a signal structure              |
| MAKE_DIM     | Make a dimension structure                                           |
| WINDOW_OF    | Return the window field of a dimension structure                     |

\latexonly } \endlatexonly




          

      

      

    

  

  
    

    Dispatch {#dt_dispatch}
    

    
 
  

    
      
          
            
  
Dispatch {#dt_dispatch}

MDSplus provides an dispatch data type used for specifying the dispatching
information of an action. This determines where and when an automatic action
should be executed during the course of a experiment cycle.

A dispatch item is a structure consisting of 5 parts; dispatch type, server,
phase, when, and completion. The dispatch type part specifies the type of
scheduling to be done. Currently only one type of dispatching is supported in
MDSplus and that is sequential scheduling (value=2). This field should contain
an integer value of 2.

The server part specifies the server that should execute the action. For tcpip
based action servers this field should contain a string such as host:port where
host is the tcpip hostname of the computer where the action server is running
and the port is the port number on which the action server is listening for
actions to perform. For DECNET based action servers (OpenVMS only), this should
be a string such as host::object where the host is the DECNET node name and the
object is the DECNET object name of the action server.

The phase part of a dispatch item is either the name or number corresponding to
the phase of the experiment cycle. These would normally be phases such as
“store”, “init”,”analysis” etc. but the names and numbers of the phases can be
customized by the MDSplus system administrator by modifying the TDI function
phase_table().

The when part normally contains either an integer value or an expression which
evaluates to an integer value representing a sequence number. When the
dispatcher (implemented by a set of mdstcl dispatch commands) builds a
dispatching table, it finds all the actions defined in a tree and then sorts
these actions first by phase and then by sequence number. Actions are then
dispatched to servers during a phase in order of their sequence numbers (except
for actions with sequence numbers less than or equal to zero which are not
dispatched). There is a special case for the when part which enables you to set
up dependencies on other actions. If instead of specifying a sequence number
for the when part, you specify an expression which references other action
nodes in the tree, this action will not be dispatched until all action nodes
referenced in the expression have completed. When all the actions referenced in
the expression have completed, the expression is then evaluated substituting
the completion status of the referenced actions instead of the action node
itself. If the result of the evaluation yields an odd number (low bit set) then
this action will be dispatched. If the result is an even value then this action
is not dispatched but instead assigned a failure completion status in case
other actions have when expressions refering to it. Using this mechanism you
can configure fairly complex conditional dispatching.

The completion part can hold a string defining the name of an MDSplus event to
be declared upon completion of this action. These events are often used to
trigger updates on visualization tools such as dwscope when this action
completes indicating availability of the data.

The following shows some examples of creating and accessing an MDSplus action.
These examples are written in TDI (the MDSplus expression evaluator language).

_MYACTION = BUILD_ACTION(
         BUILD_DISPATCH(2,"CAMAC_SERVER","STORE",50,"A12_42_DONE"),
         BUILD_METHOD(*,"STORE",A12_42)
        )
_DISPATCH = DISPATCH_OF(_MYACTION)
_TASK = TASK_OF(_MYACTION)





The above example builds an action item consisting of a dispatch item and a
metho item. The dispatch item is specifying that this action should be run on
the action server called “CAMAC_SERVER” during the “STORE” phase using
sequential scheduling, executed after all actions with sequence numbers between
1-49 have completed. When this action completes the dispatcher should issue the
MDSplus event called “A12_42_DONE”). The task portion of the action is a method
item specifying the “STORE” action is to be performed on the A14_42 (tree node)
device.

Normally actions are defined using tools such as the “traverser” and “actions”
applications and the contents of actions are referenced by action dispatchers
so you rarely need to build or access the parts of actions, dispatch and method
items by hand.

The following table lists some of the TDI functions available for creating and
accessing actions:

\latexonly { \tiny \endlatexonly

| Function    | Description                                       |
|—————–|——————————————————-|
| BUILD_DISPATCH | Build a dispatch structure                            |
| COMPLETION_OF  | Return the completion part (event) of a dispatch item |
| IDENT_OF       | Return the server part of a dispatch item             |
| MAKE_DISPATCH  | Make an dispatch structure                            |
| PHASE_OF       | Return the phase part of a dispatch item              |
| WHEN_OF        | Return the when part of a dispatch item               |

\latexonly } \endlatexonly




          

      

      

    

  

  
    

    Floating Point Numbers {#dt_float}
    

    
 
  

    
      
          
            
  
Floating Point Numbers {#dt_float}

MDSplus supports several formats of floating point values including
several types of floating values found on OpenVMS systems as well as the
more common IEEE standard floating representations. Floating point data
can be stored in any of the various types of floating point values. The
floating point values will be converted to “native” floating point types
when application referent the data. You may have applications running on
an OpenVMS system storing data in Vax F_FLOAT format but an application
running on a Unix system will receive IEEE format data when it accesses
the data.

Like most programming languages, when operations are performed with
values of different size, the values are converted to a common size (the
largest of the values being operated on) before performing the
operation. For example, if you were to add a single precision floating
point value with a double precision value the single precision valu
would first be converted to a double precision before performing the add
operation.

Floating point data can be simple scalar values or regular arrays with
one to seven dimensions. When loaded into MDSplus trees, floating point
arrays may be compressed using a non-destructive delta compression
algorithm automatically depending on the characteristics of the node in
the tree where the data is being stored. Decompression of this data
occurs automatically when the data is referenced. While floating point
data does not generally compress as well as integer data, it is not
uncommon to see a floating point data reduced to one half of its
original size.


Expression evaluator (TDI) operations used on Floating Point Data Types

The following table lists some of the more common operations performed
on floating point datatypes:

\latexonly { \tiny \endlatexonly

| Function               | Description                                                   |
|—————————-|——————————————————————-|
| ABS                        | Absolute Value                                                    |
| ABS1                       | Absolute Value with L1 norm                                       |
| ABSSQ                      | Absolute Value Squared                                            |
| ACCUMULATE                 | Running Sum                                                       |
| ACOS                       | Arc Cosine                                                        |
| ACOSD                      | Arc Cosine (degrees)                                              |
| ADD (+)                    | Add                                                               |
| AIMAG                      | Imaginary part of complex                                         |
| AINT                       | Truncation to a whole number                                      |
| ANINT                      | Nearest whole number                                              |
| ARG                        | Argument of complex number in radians                             |
| ARRAY                      | Construct array (uninitialized values)                            |
| ASIN                       | Arc Sine                                                          |
| ASIND                      | Arc Sine (degrees)                                                |
| ATAN                       | Arc Tangent                                                       |
| ATAN2                      | Arc Tangent                                                       |
| ATAND                      | Arc Tangent (degrees)                                             |
| ATAN2D                     | Arc Tangent (degrees)                                             |
| ATANH                      | Hyperbolic Arc Tangent (degrees)                                  |
| BSEARCH                    | Binary search in sorted table                                     |
| BYTE                       | Convert to 8-bit signed data type                                 |
| BYTE_UNSIGNED             | Convert to 8-bit unsigned data type                               |
| CEILING                    | Smallest whole number above argument                              |
| CMPLX                      | Convert to complex                                                |
| CONDITIONAL (test ? a : b) | Select from 2 sources based on test value                         |
| CONJG                      | Conjugate of complex number                                       |
| COS                        | Cosine                                                            |
| COSD                       | Cosine (degrees)                                                  |
| COSH                       | Hyperbolic Cosine                                                 |
| CVT                        | Convert to other data type                                        |
| DBLE                       | Double the precision, 8-bit values become 16-bit etc.             |
| DECOMPILE                  | Convert to text representation                                    |
| DIAGONAL                   | Create a diagonal matrix                                          |
| DIGITS                     | Number of significant digits                                      |
| DIM (/)                    | Positive difference                                               |
| DIVIDE (/)                 | Divide                                                            |
| DOT_PRODUCT               | Dot-product multiplication                                        |
| DPROD (/)                  | Double precision product                                          |
| DTYPE_RANGE (/)           | Build range                                                       |
| D_COMPLEX (/)             | DTYPE_D Complex                                                  |
| D_FLOAT (/)               | Convert to DTYPE_D                                               |
| ELBOUND                    | Lower bound of array                                              |
| EPSILON (/)                | Smallest positive value                                           |
| EQ (==)                    | Tests for equality                                                |
| ESHAPE                     | Return shape of array or scalar                                   |
| ESIZE                      | Total number of elements of array                                 |
| EUBOUND                    | Upper bound of array                                              |
| EXP                        | Exponential                                                       |
| EXPONENT                   | Exponent                                                          |
| FINITE                     | True if not missing or reserved value                             |
| FIX_ROPRAND               | Replace missing or reserved value                                 |
| FLOAT                      | Convert to floating point                                         |
| FLOOR                      | Largest whole number less than or equal to arg                    |
| FRACTION                   | Fractional part                                                   |
| F_COMPLEX                 | Convert to DTYPE_F complex                                       |
| F_FLOAT                   | Convert to DTYPE_F                                               |
| FS_COMPLEX                | Convert to DTYPE_FS complex                                      |
| FS_FLOAT                  | Convert to DTYPE_FS                                              |
| FT_COMPLEX                | Convert to DTYPE_FT complex                                      |
| FT_FLOAT                  | Convert to DTYPE_FT                                              |
| GE (>=)                 | Test for first greater or equal to second                         |
| GT (>)                  | Test for first greater than second                                |
| G_COMPLEX                 | Convert to DTYPE_G complex                                       |
| G_FLOAT                   | Convert to DTYPE_G                                               |
| HUGE                       | Largest value of this data type                                   |
| INT                        | Convert to signed integer                                         |
| INT_UNSIGNED              | Convert to unsigned integer                                       |
| LASTLOC                    | Locate trailing edges of a set of true elements of a logical mask |
| LBOUND                     | Lower bound of array                                              |
| LE (<=)                 | Test for first less than or equal to second                       |
| LOG                        | Natural logarithm                                                 |
| LOG10                      | Logarithm base 10                                                 |
| LOG2               | Logarithm base 2                          |
| LONG               | Convert to 32-bit signed integer          |
| LONG_UNSIGNED     | Convert to 32-bit unsigned integer        |
| LT (<)          | Test for first less than second           |
| MAP                | Element selection from an array           |
| MAX                | Maximum of argument list                  |
| MAXEXPONENT        | Maximum exponent                          |
| MAXLOC             | Determine location of maximum value       |
| MAXVAL             | Maximum value in an array                 |
| MEAN               | Average value of the elements of an array |
| MERGE              | Merge two arrays                          |
| MIN                | Minimum of argument list                  |
| MINEXPONENT        | Minimum exponent                          |
| MINLOC             | Determine location of minimum value       |
| MINVAL             | Minimum value in an array                 |
| MOD                | Remainder                                 |
| MULTIPLY (*)      | Multiply                                  |
| NE (!=)            | Test for inequality                       |
| OCTAWORD           | Convert to 128-bit value                  |
| OCTAWORD_UNSIGNED | Convert to 128-bit unsigned value         |
| PACK               | Pack and array under control of mask      |
| POWER              | Raise number to power                     |
| PRECISION          | The decimal precision                     |
| PRODUCT            | Product of all elements of an array       |
| QUADWORD           | Convert to 64-bit integer                 |
| QUADWORD_UNSIGNE  | Convert to 64-bit unsigned integer        |
| RADIX              | The base of the datatype                  |
| RANDOM             | Random number                             |
| RANGE              | The range of the datatype                 |
| RANK               | Number of dimensions                      |
| REAL               | Convert to real                           |
| RRSPACING          | The reciprocal of the spacing of datatype |
| SCALE              | Change exponent                           |
| SET_EXPONENT      | Change exponent                           |
| SET_RANGE         | Set array bounds                          |
| SHAPE              | Shape of array                            |
| SIGNED             | Convert to signed integer                 |
| SIN                | Sine                                      |
| SIND               | Sine (degrees)                            |
| SINH               | Hyperbolic Sine                           |
| SIZE               | Total number of elements in an array      |
| SIZEOF             | Total number of bytes                     |
| SORT               | Make index list of ascending array        |
| SORTVAL            | Rearrange array in ascending order        |
| SPACING            | Absolute spacing near arg                 |
| SPREAD             | Replicate an array by adding a dimension  |
| SQRT               | Square root                               |
| SQUARE             | Product of number with itself             |
| SUBSCRIPT          | Pick certain elements of array            |
| SUBTRACT (-)       | Subtract                                  |
| SUM                | Sum all elements of array                 |
| TAN                | Tangent                                   |
| TAND               | Tangent (degrees)                         |
| TANH               | Hyperbolic Tangent                        |
| TEXT               | Convert to text                           |
| TINY               | Smallest positive number                  |
| UBOUND             | Upper bound of array                      |
| UNION              | Union of sets keeping only unique values  |
| UNSIGNED           | Convert to unsigned value                 |
| WORD               | Convert to 16-bit integer                 |
| WORD_UNSIGNED     | Convert to 16-bit unsigned integer        |
| ZERO               | Create array initialized to zero          |

\latexonly } \endlatexonly





          

      

      

    

  

  
    

    Function {#dt_function}
    

    
 
  

    
      
          
            
  
Function {#dt_function}

MDSplus provides a function data type used for describing references to built
in native TDI functions. You will not normally need to concern yourself with
this data type since it is constructed automatically when you use TDI
expression syntax to invoke built in functions. When you specify an expression
such as “a + b”, MDSplus will compile this into a DTYPE_FUNCTION data item. The
function data type consists of a opcode and a list of operands. The opcode is
stored as a 16 bit code and the operands can be any MDSplus data type.

a + b





will be compiled into the same function structure as if you had specified:

BUILD_FUNCTION(BUILDIN_OPCODE('ADD'),a,b)





The following table lists some of the TDI functions available for creating and
accessing dtype function:

\latexonly { \tiny \endlatexonly

| Function    | Description                         |
|—————–|—————————————–|
| BUILD_FUNCTION | Construct a internal function reference |
| MAKE_FUNCTION  | Construct a internal function reference |

\latexonly } \endlatexonly




          

      

      

    

  

  
    

    Ident {#dt_ident}
    

    
 
  

    
      
          
            
  
Ident {#dt_ident}

MDSplus expressions can contain private and public variables (often called “Ken
Variables” after the person that implemented most of TDI, Ken Klare). When an
expression is compiled containing these variables, the reference to the
variable is stored as an DTYPE_IDENT distinguishing the name from a node
reference or a text string. When an expression containing variable references
are evaluated, the current contents of the variable is substituted for this
reference.

Care should be taken to not store variable references as data in nodes or
return them in TDI function unless they are guaranteed to be correctly defined
when the expression is evaluated. The MAKE_structure built-in functions are
provided to ensure that the variables are dereferenced. For example, if your
TDI function looked something like:

###INCORRECT!###

Public Fun MYFUN(IN _X, IN _Y) {
  return(BUILD_SIGNAL(_Y,*,_X));
}





You would get unexpected results. In this case when you try to plot the signal
returned, you would get the current contents of the private variables _X and _Y
if they are defined at all and not necessarily the values passed into the
function. To avoid this you would use the MAKE_SIGNAL function instead of the
BUILD_SIGNAL function. The MAKE_SIGNAL function replaces any of its arguments
that are Identifiers with the contents of that identifier.

###CORRECT!###

Public Fun MYFUN(IN _X, IN _Y) {
  return(MAKE_SIGNAL(_Y,*,_X));
}





The following table lists some of the functions used to create or access the
ident datatype:

\latexonly { \tiny \endlatexonly

| Function      | Description                          |
|——————-|——————————————|
| ALLOCATED         | Test if variable is currently defined    |
| DEALLOCATE        | Release variable                         |
| EQUALS [=]      | Load variable                            |
| MAKE_ACTION      | Make an action structure                 |
| MAKE_CALL        | Make a call structure                    |
| MAKE_CONDITION   | Make a condition structure               |
| MAKE_CONGLOM     | Make a conglomerate structure            |
| MAKE_DEPENDENCY  | Make a dependency structure              |
| MAKE_DIM         | Make a dimension structure               |
| MAKE_DISPATCH    | Make a dispatch structure                |
| MAKE_FUNCTION    | Make a function structure                |
| MAKE_METHOD      | Make a method structure                  |
| MAKE_PARAM       | Make a parameter structure               |
| MAKE_PROCEDURE   | Make a procedure structure               |
| MAKE_PROGRAM     | Make a program structure                 |
| MAKE_RANGE       | Make a range structure                   |
| MAKE_ROUTINE     | Make a routine structure                 |
| MAKE_SIGNAL      | Make a signal structure                  |
| MAKE_SLOPE       | Make a slope structure                   |
| MAKE_WINDOW      | Make a window structure                  |
| MAKE_WITH_ERROR | Make a with_error structure             |
| MAKE_WITH_UNITS | Make a with_units structure             |
| RESET_PRIVATE    | Deassign private variables and functions |
| RESET_PUBLIC     | Deassign public variables and functions  |
| SHOW_PRIVATE     | List private variables and functions     |
| SHOW_PUBLIC      | List public variables and functions      |
| VAR               | Define or reference variable             |

\latexonly } \endlatexonly




          

      

      

    

  

  
    

    Integers Numbers {#dt_integer}
    

    
 
  

    
      
          
            
  
Integers Numbers {#dt_integer}

MDSplus supports several formats of integers including 8-bit, 16-bit, 32-bit,
64-bit and 128-bit signed and unsigned integers. The data is stored in 2’s
complement representation and little endian format. The endian is converted to
big or little endian depending on the computer platform being used to reference
the data. Like most programming languages, when operations are performed with
values of different size, the values are converted to a common size (the
largest of the values being operated on) before performing the operation. For
example, if you were to add a 16-bit integer with a 32-bit integer the 16-bit
integer would first be converted to a 32-bit integer before performing the add
operation.

Integers can be simple scalar values or regular arrays with one to seven
dimensions. When loaded into MDSplus trees, integer arrays may be compressed
using a non-destructive delta compression algorithm automatically depending on
the characteristics of the node in the tree where the data is being stored.
Decompression of this data occurs automatically when the data is referenced.
Raw data from data acquisition hardware is often stored in integer format and
often compresses to one third or less of its orginal size requiring less disk
space for storage and network bandwidth when accessing the data remotely.


Expression evaluator (TDI) operations used on Integer Data Types

The following table lists some of the more common operations performed on
integer datatypes:

\latexonly { \tiny \endlatexonly

| Function               | Description                                                   |
|—————————-|——————————————————————-|
| ABS                        | Absolute Value                                                    |
| ABSSQ                      | Absolute Value Squared                                            |
| ADD (+)                    | Add                                                               |
| ALL                        | Determine if all values are true                                  |
| AND                        | Logical And                                                       |
| AND_NOT                   | Logical And with negation of second                               |
| ANY                        | Determine if any values are true                                  |
| ARRAY                      | Construct array (uninitialized values)                            |
| BIT_SIZE                  | Size in bits of data type                                         |
| BSEARCH                    | Binary search in sorted table                                     |
| BTEST                      | Test a bit of a number                                            |
| BYTE                       | Convert to 8-bit signed data type                                 |
| BYTE_UNSIGNED             | Convert to 8-bit unsigned data type                               |
| CHAR                       | Convert to text character                                         |
| CONDITIONAL (test ? a : b) | Select from 2 sources based on test value                         |
| COUNT                      | Count number of true elements                                     |
| CVT                        | Convert to other data type                                        |
| DATE_TIME                 | Convert 64-bit internal date format to ascii date and time string |
| DBLE                       | Double the precision, 8-bit values become 16-bit etc.             |
| DECOMPILE                  | Convert to text representation                                    |
| DIAGONAL                   | Create a diagonal matrix                                          |
| DIGITS                     | Number of significant digits                                      |
| DIVIDE (/)                 | Divide                                                            |
| DOT_PRODUCT               | Dot-product multiplication                                        |
| ELBOUND                    | Lower bound of array                                              |
| EQ (==)                    | Tests for equality                                                |
| EQV                        | Tests for logical equality                                        |
| ESHAPE                     | Return shape of array or scalar                                   |
| ESIZE                      | Total number of elements of array                                 |
| EUBOUND                    | Upper bound of array                                              |
| FLOAT                      | Convert to floating point                                         |
| GE (>=)                 | Test for first greater or equal to second                         |
| GT (>)                  | Test for first greater than second                                |
| HUGE                       | Largest value of this data type                                   |
| IAND (&)                   | Bit-by-bit intersection                                           |
| IAND_NOT                  | Bit-by-bit intersection with complement of second                 |
| IBCLR                      | Clear one bit to zero                                             |
| IBSET                      | Set one bit to one                                                |
| IEOR                       | Bit-by-bit exclusive or                                           |
| IEOR_NOT                  | Bit-by-bit exclusive or with complement of second                 |
| IF                         | IF statement                                                      |
| INAND                      | Complement of bit-by-bit intersection                             |
| INAND_NOT                 | Complement of bit-by-bit intersection with complement of second   |
| INOR                       | Complement of bit-by-bit union                                    |
| INOR_NOT                  | Complement of bit-by-bit union with complement of second          |
| INOT                       | Complement bit-by-bit                                             |
| INT                        | Convert to signed integer                                         |
| INT_UNSIGNED              | Convert to unsigned integer                                       |
| IOR (|)                   | Bit-by-bit inclusive or                                           |
| IOR_NOT                   | Bit-by-bit union with complement of second                        |
| ISHFT                      | Logical shift                                                     |
| LASTLOC                    | Locate trailing edges of a set of true elements of a logical mask |
| LBOUND                     | Lower bound of array                                              |
| LE (<=)                 | Test for first less than or equal to second                       |
| LOGICAL                    | Convert to logical                                                |
| LONG                       | Convert to 32-bit signed integer                                  |
| LONG_UNSIGNED             | Convert to 32-bit unsigned integer                                |
| LT (<)                  | Test for first less than second                                   |
| MAP                        | Element selection from an array                                   |
| MAX                        | Maximum of argument list                                          |
| MAXLOC                     | Determine location of maximum value                               |
| MAXVAL                     | Maximum value in an array                                         |
| MEAN                    | Average value of the elements of an array                |
| MERGE                   | Merge two arrays                                         |
| MIN                     | Minimum of argument list                                 |
| MINLOC                  | Determine location of minimum value                      |
| MINVAL                  | Minimum value in an array                                |
| MOD                     | Remainder                                                |
| MULTIPLY (*)           | Multiply                                                 |
| NAND                    | Negation of logical intersection                         |
| NAND_NOT               | Negation of logical intersection with negation of second |
| NE (!=)                 | Test for inequality                                      |
| NEQV                    | Test inequality of logical values                        |
| NOR                     | Negation of logical union of elements                    |
| NOR_NOT                | Negation of logical union with negation of second        |
| NOT (!)                 | Negate a logical                                         |
| OCTAWORD                | Convert to 128-bit value                                 |
| OCTAWORD_UNSIGNED      | Convert to 128-bit unsigned value                        |
| OR (||)               | Logical union                                            |
| OR_NOT                 | Logical union with negation of second                    |
| PACK                    | Pack and array under control of mask                     |
| PRODUCT                 | Product of all elements of an array                      |
| QUADWORD                | Convert to 64-bit integer                                |
| QUADWORD_UNSIGNED      | Convert to 64-bit unsigned integer                       |
| SET_RANGE              | Set array bounds                                         |
| SHAPE                   | Shape of array                                           |
| SHIFT_LEFT (<<)  | Bitwise shift of value                                   |
| SHIFT_RIGHT (>>) | Bitwise shift of value                                   |
| SIGNED                  | Convert to signed integer                                |
| SIZE                    | Total number of elements in an array                     |
| SIZEOF                  | Total number of bytes                                    |
| SORT                    | Make index list of ascending array                       |
| SORTVAL                 | Rearrange array in ascending order                       |
| SPREAD                  | Replicate an array by adding a dimension                 |
| SQUARE                  | Product of number with itself                            |
| SUBSCRIPT               | Pick certain elements of array                           |
| SUBTRACT (-)            | Subtract                                                 |
| SUM                     | Sum all elements of array                                |
| TEXT                    | Convert to text                                          |
| UBOUND                  | Upper bound of array                                     |
| UNION                   | Union of sets keeping only unique values                 |
| UNSIGNED                | Convert to unsigned value                                |
| WORD                    | Convert to 16-bit integer                                |
| WORD_UNSIGNED          | Convert to 16-bit unsigned integer                       |
| ZERO                    | Create array initialized to zero                         |

\latexonly } \endlatexonly





          

      

      

    

  

  
    

    Method {#dt_method}
    

    
 
  

    
      
          
            
  
Method {#dt_method}

MDSplus provides a method data type for describing an operation to be performed
on an MDSplus device to be used as the task portion of an action data item.
MDSplus devices support various “methods” which can be performed on the device.
For example, transient digitizer device may support an “INIT” method to prepare
the device to acquire data and a “STORE” method which would retrieve the data
from the physical device and store it into the device nodes in the MDSplus
tree.

The method data type is a structure consisting of three fields followed by
optional arguments to the method being performed.

The first field is a timeout value specified in seconds. When the method is
being performed on the device and a timeout is specified, a timer is started
when the operation is started and if the operation is not completed before the
specified timeout, the operation will be aborted abruptly. This field can
either be omitted or should contain a value or expression which when evaluated
will result in a scalar numeric value.

The next field in the method data type is the name of the method to be
performed. This should contain a value or expression which when evaluated will
result in a scalar text value representing a supported method for the device
being operated on (i.e. “INIT”, “STORE”,”EXECUTE”). The set of available
methods is device specific.

The next field is the object on which this operation is to be performed. This
should be a node reference to one of the nodes which make up the device,
usually the top node in the device node structure.

These first three fields can be followed by optional parameters which will be
interpretted by the implementation of the method. These fields are specific to
the implementation of the various methods.

The following shows an example of creating an MDSplus method. This example is
written in TDI (the MDSplus expression evaluator language).

_MYACTION = BUILD_ACTION(
         BUILD_DISPATCH(2,"CAMAC_SERVER","STORE",50,"A12_42_DONE"),
         BUILD_METHOD(*,"STORE",A12_42)
        )





The above example builds an action item consisting of a dispatch item and a
method item. The dispatch item is specifying that this action should be run on
the action server called “CAMAC_SERVER” during the “STORE” phase using
sequential scheduling, executed after all actions with sequence numbers between
1-49 have completed. When this action completes the dispatcher should issue the
MDSplus event called “A12_42_DONE”). The task portion of the action is a method
item specifying the “STORE” action is to be performed on the A14_42 (tree node)
device.

Normally actions are defined using tools such as the “traverser” and “actions”
applications and the contents of actions are referenced by action dispatchers
so you rarely need to build or access the parts of actions, dispatch and method
items by hand.

The following table lists some of the TDI functions available for creating and
accessing method:

\latexonly { \tiny \endlatexonly

| Function  | Description                         |
|—————|—————————————–|
| BUILD_METHOD | Build a method structure                |
| MAKE_METHOD  | Make a method structure                 |
| METHOD_OF    | Return the method name part of a method |
| OBJECT_OF    | Return the object part of a method      |
| TIME_OUT_OF | Return the timeout part of a method     |

\latexonly } \endlatexonly




          

      

      

    

  

  
    

    Range {#dt_range}
    

    
 
  

    
      
          
            
  
Range {#dt_range}

MDSplus provides a range data type which provides a compact mechanism for
expressing series of values with fixed intervals. The range data type is a
structure consisting of three parts; begin, end, and delta. This data type is
used often in MDSplus for representing data such as the output of clock devices
used in data acquisition. The following example shows three simple instances of
ranges:

_range1 = 1 : 10
_range1b = build_range(1,10,*)
_range2 = 1 : 10 : .5
_range2b = build_range(1,10,.5)
_range3 = * : * : 1E-6
_range3b = build_range(*,*,1E-6)





In the above examples, we show two formats for creating ranges. The MDSplus
expression evaluator has a built in syntax for specifying ranges which is:
begin : end [: delta]. In the first two examples (_range1 and _range1b) a range
is created with a beginning of 1 and and ending of 10 with no delta specified.
If the delta is missing, it defaults to a delta of 1. If these ranges were
evaluated using data(_range1), for example, it would result in an integer array
of ten values: [1,2,3,4,5,6,7,8,9,10]. The next examples (_range2 and _range2b)
specify a delta of .5. In this case the result when evaluated would be an array
of 19 values: [1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5,
8., 8.5, 9., 9.5, 10.]. The last two examples (_range3 and _range3b) show a
range with no beginning or end but with a delta of 1E-6. This represents an
infinite ramp of values beginning at minus infinity and ending in positive
infinity with each value being separated by 1E-6. Obviously you could not
evaluate this range to get an array of values since the array would have an
inifinite number of elements. This type of range can be used however as the
axis part of a dimension data item where the dimension’s window part is used to
select a finite segment of this infinite list of values.

Ranges can be much more complex in MDSplus by specifying vectors for each of
the fields. For example:

_range = build_range([1.,100.],[5.,105.],[.5,1.])





When you evaluate the above example using data(_range), you will get the
following array of values: [1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 100., 101.,
102., 103., 104., 105.]. The range describes two ramp segments: 1 : 5 : .5 and
100 : 105 : 1. The following might represent a two speed clock which shifts
frequence at time 0:

_clock = build_range([$ROPRAND,0.],[0.,$ROPRAND],[1E-3,1E-6])





Like the example _range3 above, this range could not be evaluated independently
and would need to be part of a dimension item with a window selecting a finite
set of the values. The $ROPRAND value shown in this example is a mechanism for
indicating missing values in arrays of floating point data. This example shows
two range segments: * : 0. : 1E-3 and 0. : * : 1E-6.

The following table lists some of the TDI functions available for creating or
accessing ranges:

\latexonly { \tiny \endlatexonly

| Function | Description                             |
|————–|———————————————|
| BEGIN_OF    | Return begin portion of a range             |
| BUILD_RANGE | Build a range structure                     |
| END_OF      | Build a signal structure                    |
| MAKE_RANGE  | Make a range structure                      |
| SLOPE_OF    | Return the delta field of a range structure |

\latexonly } \endlatexonly




          

      

      

    

  

  
    

    Routine {#dt_routine}
    

    
 
  

    
      
          
            
  
Routine {#dt_routine}

MDSplus provides a routine data type for describing an function call to be used
as the task portion of an ction data item.

The routine data type is a structure consisting of three fields followed by
optional arguments to the method being performed.

The first field is a timeout value specified in seconds. When the routine is
being executed and a timeout is specified, a timer is started when the
operation is started and if the operation is not completed before the specified
timeout, the operation will be aborted abruptly. This field can either be
omitted or should contain a value or expression which when evaluated will
result in a scalar numeric value.

The next field in the routine data type is the name of an image which contains
the routine to be executed. This should contain a value or expression which
when evaluated will result in a scalar text value indicating the name of the
image or library where the routine can be found (case sensitive on Unix
platforms). See the description of the call data type for additional
information on how the library is located.

The next field is the routine name to execute. This should conatin a value or
expression which when evaluated will result in a scalar text value indicating
the name of the routine (case sensitive on Unix and Windows platforms) to be
executed.

The following fields represent optional arguments to be passed to the routine.
The arguments will be evaluated and converted to native data types before being
passed to the routine.

This data type is rarely used since the task part of an action can be also be
an expression. The call capabilities built into the expression evaluator
provides much more flexibility in specifying how the arguments to the routine
are to be passed.

The following table lists some of the TDI functions available for creating and
accessing routines:

\latexonly { \tiny \endlatexonly

| Function   | Description                         |
|—————-|—————————————–|
| BUILD_ROUTINE | Build a routine structure               |
| IMAGE_OF      | Return the image name part of a routine |
| MAKE_ROUTINE  | Make a routine structure                |
| ROUTINE_OF    | Return the object part of a routine     |
| TIME_OUT_OF  | Return the timeout part of a routine    |

\latexonly } \endlatexonly




          

      

      

    

  

  
    

    Signal {#dt_signal}
    

    
 
  

    
      
          
            
  
Signal {#dt_signal}

MDSplus provides a signal data type which combines dimension descriptions with
the data. While it was initially designed to be used for efficient storage of
data acquired from measurement devices attached to an experiment it has been
found to be a very useful way of storing additional information such as results
from data analysis or modeling data. A signal is a structure of three or more
fields. The first field is the “value” field of the signal. This is followed by
an optional raw data field (explained later). These two fields can be followed
by one or more dimension descriptions. The number of dimension descriptions in
general should match the dimensionality of the value.

The easiest way to describe a signal is through an example. MDSplus stores data
from a transient recorder which is a device which measures voltage as a
function of time. Typically a transient recorder uses a analog to digital
converter and records the data as a series of integer values. A linear
conversion can be done to convert these integer values into input voltages
being measured. When MDSplus stores the data for such a device it uses a signal
datatype to record the data. The signal structure is constructed by putting an
expression for converting the integer data to volts in the “value” portion, the
integer data in the raw data portion, and a representation of the timebase in
the single dimension portion.

Many applications have been written for visualizing MDSplus signals. Simple but
efficient applications such as dwscope assume the item it is displaying is a
one dimensional vector. The application can simply ask MDSplus for the
evaluation of the value portion of a signal and plot that against the
evaluation of the first dimension portion. More complex visualization tools can
query to determine the dimensionality of the signal and automatically provide
X-Y plots, contour or surface plots or more complicated displays based on the
shape of the signal.

Another feature of MDSplus signals is that they can be subscripted in
expressions where the subscripts are expressed in the units of the dimension.
In the transient recorder example, such a signal could be subscripted to
extract the values within a certain time range. The data returned from a
subscripting operation on a signal is represented as another signal containing
a subset of the original data along with the matching dimensions of this
subset.

Applications can construct signals by using the BUILD_SIGNAL or MAKE_SIGNAL
builtin functions. MAKE_SIGNAL should be used instead of BUILD_SIGNAL in
writing TDI functions to ensure that local variable references are replaced
with the contents of those variable when constructing the signal being returned
to the caller. Three builtin functions are provided to access the various
portions of the signal; VALUE_OF, RAW_OF and DIM_OF. If you attempt to convert
the value of a signal to a primitive type (integer, floating point or text),
MDSplus does an implicit VALUE_OF call to access the value portion of the
signal.

Since each portion of a signal can contain any supported MDSplus datatype, you
can store structures such as “with units” datatypes in the parts of a signal.
This is done when MDSplus stores signals during data acquisition so an
application can find out the units of the various parts of the signal.

The following shows some examples of creating and accessing an MDSplus signal.
These examples are written in TDI (the MDSplus expression evaluator language).

##Example 1

_MYSIGNAL = BUILD_SIGNAL([1,2,3],*,BUILD_DIM(,[4,5,6]))
_SUBSET = _MYSIGNAL[4.5:6]
WRITE(*,_SUBSET)





The above simple example builds a signal with a three element array as the
value and a matching three element array as the dimension. The signal is then
subscripted using a range requesting all the data between 4.5 and 6 in its
dimension. The write statement would output the following: “Build_Signal([2,3],
*, [5,6])”. Note the subscripting does not do any interpolation but merely
extracts the values found lying within the ranges of the subscripting.

##Example 2

_DIGSIG = BUILD_SIGNAL(
         BUILD_WITH_UNITS($VALUE * 1E-3 + .5,"volts"),
         BUILD_WITH_UNITS([100,200,300,397...],"counts"),
         BUILD_DIM(BUILD_WINDOW(0,8191,TRIGGER_NODE),CLOCK_NODE))





Example 2 shows how experimental data read from a transient recorder might be
stored as a signal. The value portion of the signal is an expression using the
special variable, $VALUE, which represents the raw data portion of the same
signal. The dimension description uses a special MDSplus construct for
compactly representing the timestamps of the data which is computed when the
dimension of the signal is evaluated. This dimension construct consisting of a
window data type and a clock reference defines the timebase. How this gets
evaluated into a series of timestamps is explained in the description of the
DTYPE_WINDOW datatype.

##Example 3

_VALUE = VALUE_OF(_DIGSIG)
_RAW = RAW_OF(_DIGSIG)
_TIME = DIM_OF(_DIGSIG)
_VALUE_UNITS = UNITS_OF(VALUE_OF(_DIGSIG))
_RAW_UNITS = UNITS_OF(RAW_OF(_DIGSIG))
_TIME_UNITS = UNITS_OF(DIM_OF(_DIGSIG))
_VALUE_UNITS = UNITS_OF(_VALUE)





Example 3 illustrates how to access the parts of the signal. Since this signal
had units attached to the parts you can get the units of each part by using the
UNITS_OF function on each part.

##Example 4

IDL> mdsput,'\image', $
        'BUILD_SIGNAL( BUILD_WITH_UNITS($,"Photons"),,' + $
        'BUILD_WITH_UNITS($,"Sec"), BUILD_WITH_UNITS($,"cm") )' $
        , image_data, t, x





Example 4 illustrates how to build a two dimensional signal with units for
signal (in this case “Photons”) and both dimensions (in this case “Sec” and
“cm”). The example is written in IDL. The three variables containing the
data-arrays are image_data(2D), t(1D) and x(1D).

Another important piece of information regarding the signal data type is how
MDSplus handles signals when performing some of the arithmethic builtin
operations on a signal. MDSplus attempts to retain the signal characteristics
or a a signal through operations as long as it can. If you perform a simple
binary operation using a signal and a scalar value (such as mutiply a signal be
the constant 3), MDSplus will return a signal with the original dimensions.
However, if you do a similer operation with another signal, MDSplus will not
make any attempt to reconcile the dimension information either by subscripting
or interpolation. In this case, both signals will be stripped of their
dimensions prior to performing the operation and the operation will take place
as if the two signals were two simple arrays of data. If you know that both
signals had the same dimension then you would have to operate on the signals
and create a new signal using the dimensions of one of the signals as shown
below:

BUILD_SIGNAL(_SIG1+_SIG2,*,DIM_OF(_SIG1))





The following table lists some of the TDI functions available for creating or
accessing signals:

\latexonly { \tiny \endlatexonly

| Function      | Description                                                               |
|——————-|——————————————————————————-|
| BUILD_SIGNAL     | Build a signal structure                                                      |
| DATA              | Evaluates value portion of signal converting to one of integer, float or text |
| DATA_WITH_UNITS | Same as DATA but preserves units                                              |
| DIM_OF           | Returns the dimension field of a signal                                       |
| MAKE_SIGNAL      | Make a signal structure                                                       |
| RAW_OF           | Return the raw data field of signal                                           |

\latexonly } \endlatexonly




          

      

      

    

  

  
    

    Strings {#dt_string}
    

    
 
  

    
      
          
            
  
Strings {#dt_string}

MDSplus supports scalars or arrays of text strings. Text strings are limited to
lengths of 64K characters.


Expression evaluator (TDI) operations used on Text Data Type

The following table lists some of the more common operations performed on the
text datatype:

\latexonly { \tiny \endlatexonly

| Function       | Description                                |
|——————–|————————————————|
| ADJUSTL            | Adjust string left                             |
| ADJUSTR            | Adjust string right                            |
| BSEARCH            | Binary search                                  |
| BUILD_PATH        | Convert string to node reference               |
| BUILD_WITH_UNITS | Attach units to value                          |
| COMPILE            | Compile string into TDI expression             |
| CONCAT             | Concatenate strings                            |
| DATE_TIME         | Convert quadword internal time to string       |
| DECOMPILE          | Convert compiled expression or value to string |
| ELEMENT            | Extract element of string                      |
| EQ [==]          | Test for equality                              |
| EXECUTE            | Compile and evaluate string                    |
| EXTRACT            | Extract portion of string                      |
| FOPEN              | Open a file                                    |
| GE [>=]       | Test for greater or equal                      |
| GT [>]        | Test for greater                               |
| INDEX              | Locate substring in string                     |
| LE [<=]       | Test for less or equal                         |
| LEN                | Length of string                               |
| LEN_TRIM          | Length of string without trailing white space  |
| LGE                | Test for greater or equal                      |
| LGT                | Test for greater                               |
| LLE                | Test for less or equal                         |
| LLT [<=]      | Test for less                                  |
| LT [<]        | Test for less                                  |
| MAKE_WITH_UNITS  | Attach units to value                          |
| NE [!=]          | Test for not equal                             |
| REPEAT [>]    | Concatenate copies of string                   |
| SCAN               | Scan a string for character in set             |
| SORT               | Make index list of sorted elements in array    |
| SORTVAL            | Sort elements in array                         |
| TEXT               | Convert to text                                |
| TRANSLATE          | Replace matching characters                    |
| TRIM               | Remove trailing white space                    |
| UNION              | Reduce array to unique values                  |
| UNITS              | Get the units                                  |
| UNITS_OF          | Get the units                                  |
| UPCASE             | Convert to uppercase                           |
| VERIFY             | Verify that a set of characters in string      |

\latexonly } \endlatexonly





          

      

      

    

  

  
    

    Window {#dt_window}
    

    
 
  

    
      
          
            
  
Window {#dt_window}

MDSplus provides a window data type which is used exclusively in conjunction
with a dimension data item. The window provides a means for bracketing a
potentially infinite vector of values generated by a range data item. A window
data type is a structure containing three fields: the start index, the end
index and the value at index 0. The window brackets the axis portion of a
dimension item by finding the nearest element in the axis to the “value at
index 0” value. The subset of the axis elements are selected using the start
index and end index using this starting element as the index 0. For example if
the window was BUILD_WINDOW(-5,10,42.), MDSplus would find the element in the
axis portion of the dimension closest to a value of 42 (assuming the axis is
always increasing) and call that element, element number 0. The subset would be
this element and the 5 elements before it and the 10 elements after it. For a
more detailed explanation see the description of the dimension data type.

The following table lists some of the TDI functions available for creating or
accessing windows:

\latexonly { \tiny \endlatexonly

| Function  | Description                              |
|—————|———————————————-|
| BEGIN_OF     | Return begin portion of a window             |
| BUILD_WINDOW | Build a window structure                     |
| END_OF       | Return the end portion of a window structure |
| MAKE_WINDOW  | Make a window structure                      |

\latexonly } \endlatexonly




          

      

      

    

  

  
    

    With Error {#dt_with_error}
    

    
 
  

    
      
          
            
  
With Error {#dt_with_error}

MDSplus provides a with error data type which enables you to attach error
information to a value. A with error data item is a structure containing two
“fields”. The first field is the value and the second is the error. Each part
of a with error data type can be either missing or a value of any other
supported data type. General applications available at your site may assume
some convention on the type of data each field contains.

A with error item can be created using the BUILD_WITH_ERROR or MAKE_WITH_ERROR
functions. For example:

_mydata = BUILD_WITH_ERROR([42,43,40],[.5,.45,.6])





The following table lists some of the TDI functions available for creating or
accessing with error items:

\latexonly { \tiny \endlatexonly

| Function       | Description                                                                        |
|——————–|—————————————————————————————-|
| BUILD_WITH_ERROR | Build a with error structure                                                           |
| DATA               | Evaluates value portion of with error item converting to one of integer, float or text |
| ERROR_OF          | Return the error field of with error structure                                         |
| MAKE_WITH_ERROR  | Make a with error structure                                                            |
| VALUE_OF          | Return the value field of with error structure                                         |

\latexonly } \endlatexonly




          

      

      

    

  

  
    

    With Units {#dt_with_units}
    

    
 
  

    
      
          
            
  
With Units {#dt_with_units}

MDSplus provides a with units data type which enables you to attach units to a
value. A with units data item is a structure containing two “fields”. The first
field is the value and the second is the units. Each part of a with units data
time can be either missing or a value of any other supported data type. General
applications available at your site may assume some convention on the type of
data each field contains (i.e. a units field that when evaluated returns
DTYPE_T, a string).

A with units item can be created using the BUILD_WITH_UNITS or MAKE_WITH_UNITS
functions. For example:

_mydata = BUILD_WITH_UNITS(42,"volts")





The following table lists some of the TDI functions available for creating or
accessing with units items:

\latexonly { \tiny \endlatexonly

| Function       | Description                                                                        |
|——————–|—————————————————————————————-|
| BUILD_WITH_UNITS | Build a with units structure                                                           |
| DATA               | Evaluates value portion of with units item converting to one of integer, float or text |
| MAKE_WITH_UNITS  | Make a with units structure                                                            |
| UNITS              | Return units or blank                                                                  |
| UNITS_OF          | Return the units field of with units structure                                         |
| VALUE_OF          | Return the value field of with units structure                                         |

\latexonly } \endlatexonly




          

      

      

    

  

  
    

    “mdstcpip” The remote data acess {#lib_mdsip}
    

    
 
  

    
      
          
            
  
“mdstcpip” The remote data acess {#lib_mdsip}

\image html img/planet_mdsplus.png “MDSplus is broadly adopted framework in the fusion community”
\image latex img/planet_mdsplus.png “MDSplus is broadly adopted framework in the fusion community” height=6cm

MDSplus provides a very simple but powerful protocol for connecting to remote
servers to perform tasks such as retrieving or writing data and performing
actions. In an MDSip session, the client program opens a connection to a remote
server and the communicates with that server by sending an MDSplus TDI
expression text string along with optional parameters which are scalars or
arrays of text or numbers. The server process evaluates the expression and
sends the result as a scalar or array of text or numbers. Except for a few
other low level functions used by MDSplus internals, that is the main
functionality of MDSip. Although the concept is simple, combining this
functionality with the capabilities of TDI enables MDSip to become a gateway
for data exchange even if the data is not stored in native MDSplus format.
The original implementation of MDSip was done in 1994 to give Unix based system
access to MDSplus data which at the time only existed on OpenVMS servers.
It has become a very important capability of MDSplus ever since, providing
access to data and providing an infrastructure for distributed computing for
data acquisition and analysis.

For further details please refer to the MdsIp component manual

|   GO TO THE COMPONENT MANUAL  |
|——————————-|
| \ref mdsip_manual             |




          

      

      

    

  

  
    

    MDSplus Objects Intefaces {#lib_mdsobjects}
    

    
 
  

    
      
          
            
  
MDSplus Objects Intefaces  {#lib_mdsobjects}

MDSplus provides API’s (application programming interface) to several object
oriented languages. A common set of classes and methods are provided in all
of these API’s.
There may be some language specific “enhancements” to the common interface to
take advantage of some features of the language which are not available in all
of the languages supported.


C++ Interface

At the time of writing all the C++ interface library is actually a wrapper
above the MDSplus components such as the mdsip connection library and the tree
structures. It provide a set of objects that describe the common routines
performed to acquire and manage data in a object oriented environment. You
should find it linked in a shared library named MdsObjectsCppShr.so (.dll in
windows) while the file mdsobjects.h contains all the definitions of the object
classes. All the C++ classes for MDSplus objects are declared to belong to \em
MDSplus namespace. It is therefore convenient to begin the program as follows:

\code{.cpp}
#include <mdsobjects.h>
using namespace MDSplus;
\endcode

For further details see reference manual for the MDSplus C++ Object component:

|   GO TO THE COMPONENT MANUAL  |
|——————————-|
| \ref mdsobjects_cpp_manual    |



Python Interface

The python interface to MDSplus objects.

|   GO TO THE COMPONENT MANUAL  |
|——————————-|
| \ref mdsobjects_py_manual     |



Java Interface

The Java interface to MDSplus objects.

|   GO TO THE COMPONENT MANUAL  |
|——————————-|
| \ref mdsobjects_java_manual   |





          

      

      

    

  

  
    

    “mdsshr” MDSplus general support routines {#lib_mdsshr}
    

    
 
  

    
      
          
            
  
“mdsshr” MDSplus general support routines {#lib_mdsshr}

The MdsShr component is a general support library where some utility functions
are implemented to provide functions such as:


	Data descriptor manipulation


	Data compression


	OpenVMS run-time library emulation used when porting the original MDSplus
system to other operating system.




For further details please refer to the MdsShr component manual

|   GO TO THE COMPONENT MANUAL  |
|——————————-|
| \ref mdsshr_manual            |




          

      

      

    

  

  
    

    “tdishr” The TDI language parser {#lib_tdishr}
    

    
 
  

    
      
          
            
  
“tdishr” The TDI language parser {#lib_tdishr}

The TDI is the language used for expressions stored in MDSplus nodes. A TDI
expression can be a number, a variable, simple text, or a complex function.
That expression is evaluated by MDSplus.

TDI is a programming language; it contains the sequential, repetition, and
decision structures fundamental to any structured programming language. This
means that you can put programs into MDSplus nodes (although for tree design
reasons you would probably not want to put everything into a single node).




          

      

      

    

  

  
    

    “treeshr” The Tree storage system {#lib_treeshr}
    

    
 
  

    
      
          
            
  
“treeshr” The Tree storage system  {#lib_treeshr}

MDSplus provides a data storage mechanism for recording a wide variety of
information pertaining to experiments or simulations including, but not limited
to, data acquisition settings, comments, physical measurements, data
acquisition and analysis task information and analysis results. Keeping all
this information organized can be difficult especially with large experiments
or codes where there may be many thousands of data items. MDSplus provides a
hierarchical tree structure in its data storage so that users can organize
their data much like one would organize files in a file system with directories
and subdirectories.




          

      

      

    

  

  
    

    MDSplus Components {#mdsplus_components}
    

    
 
  

    
      
          
            
  
MDSplus Components  {#mdsplus_components}

The followings are the main MDSplus software components. They are build into
separate shared libraries for each host machine using the autotools build
system. This manual contains only a brief description of what the component
does as a separate documentation should be available.


List of components:


	\subpage lib_mdsshr


	\subpage lib_treeshr


	\subpage lib_tdishr


	\subpage lib_mdsip


	\subpage lib_mdsobjects




To have a simple localization of the software component within the MDSplus
source tree we shall refer to the following scheme:

\dot “MDSplus source directory structure for component localization” height=8cm
digraph example {




splines=ortho;

ranksep=0.05;    

node[shape=record, fontname=Serif, fontsize=9, color=lightgray, style=filled];
mdsshr[label="mdsshr" URL="\ref lib_mdsshr"];
treeshr[label="treeshr" URL="\ref lib_treeshr"];
tdishr[label="tdishr" URL="\ref lib_tdishr"];
mdstcpip[label="mdstcpip" URL="\ref lib_mdsip"];
mdsobjects[label="mdsobjects" URL="\ref lib_mdsobjects"];
mdsobjects_cpp[label="cpp"    URL="\ref mdsobjects_cpp_manual"];
mdsobjects_py [label="python" URL="\ref mdsobjects_py_manual" ];
mdsobjects_java [label="java" URL="\ref mdsobjects_java_manual" ];

node[shape=none, color=none, style=solid];
root[label="MDSplus source"];
d_mdsshr[label="general support library"];
d_treeshr[label="tree storage system"];
d_tdishr[label="tdi language interpreter"];
d_mdstcpip[label="remote data access"];
d_mdsobjects_cpp[label="C++ objects interface"];
d_mdsobjects_py [label="Python objects interface"];
d_mdsobjects_java [label="Java objects interface"];


node[label="", width=0, height=0];
edge[arrowhead=none, color=blue];


root -> n5;


{rank=same; n5; mdsshr; d_mdsshr; }
n5 -> mdsshr;
n5 -> n1;

{rank=same; n1; treeshr; d_treeshr;}
n1 -> treeshr;    
n1 -> n6;

{rank=same; n6; tdishr; d_tdishr; }
n6 -> tdishr;
n6 -> n2;

{rank=same; n2; mdstcpip; d_mdstcpip; }
n2 -> mdstcpip;
n2 -> n3;

{rank=same; n3; mdsobjects;}
n3 -> mdsobjects;
  mdsobjects -> n4;
  {rank=same; n4; mdsobjects_cpp; d_mdsobjects_cpp; }
  n4 -> mdsobjects_cpp;
  {rank=same; n7; mdsobjects_py; d_mdsobjects_py; }
  n7 -> mdsobjects_py;
  n4 -> n7;
  {rank=same; n8; mdsobjects_java; d_mdsobjects_java; }
  n8 -> mdsobjects_java;
  n7 -> n8;





}
\enddot




          

      

      

    

  

  
    

    Generate doxygen documentation {#use_docs}
    

    
 
  

    
      
          
            
  
Generate doxygen documentation  {#use_docs}

This explains how to make MDSplus self generating documentation.

MDSplus is now using \em Doxygen (http://www.doxygen.org) to automatically build
code documentation for several components.
The build process of Doxygen has been also enhanced using autotools scripts.
The overall organization of documents follows the path hierarchy
of the code itself, so if we can think MDSplus components as separate libraries
each of these libraries will have its own documentation directory and its own
doxygen Makefile. As a general policy we choosed to name this directory “docs”
but it is not mandatory.

This subdirectory has the role of insulating the actual code distribution to the
docs generation, indeed it has a separate selfconsistent Makefile.am script where
all documented pages have to be declared toghether with the documentation options.
It also may contins also any plain text file witten in \em markdown language
(http://en.wikipedia.org/wiki/Markdown) that is parsed by doxygen to add text
only pages to the documents.

A special purpouse directory was also defined at the MDSplus top source directory,
here all the doxygen related files, such as configurations and layout template, are
stored. This directory represents also the main documentation folder where links
of all the sublibraries are indexed.


How does it work

A doxygen related autoconf script has been added to the framework:

m4
`-- ax_prog_doxygen.m4





This is the main script that aclocal includes to handle doxygen generation. It
defines a function that is called from autoconf script configure.ac:

DX_INIT_DOXYGEN(mdsplus, doxygen.cfg)
DX_HTML_FEATURE(ON)
DX_PDF_FEATURE(ON)





As you can see inside the m4 and in all automake script files there are several
variables defined to set doxygen options, each declared with a DX_xxx name
(to remind the user that it is doxygen related). Exporting these variables to the
Makefile target script environment doxygen can set its own config options inside
the config file when executed.

The followings are the special files that documentation relies on. They can be
found in your MDSplus source code “docs” directory.

docs
|-- Makefile.am
|-- config
|   |-- doxygen.am
|   |-- doxygen.cfg
|   |-- doxygen_cpp.cfg
|   `-- style
|       |-- footer.html
|       |-- header.html
|       |-- institutes.png
|       |-- logo.jpg
|       `-- mds_style.css





Here the config directory holds doxygen related files. The most important are
“doxygen.am” and “doxygen*.cfg” that are where the scripts are mainly defined.
A short step by step guide to include a target follows:



Adding doxygen handled sublibrary

We shall see how a “sublib” library would have been included in the MDSplus docs.
The main steps to be implemented to define a new documentation library are three:


1) Create docs Makefile

First create “docs” directory and Makefile.am file inside that has to include the
automake doxygen script \em ${top_srcdir}/docs/config/doxygen.am

sublib
|-- docs
|   `-- Makefile.am





Write in that file the following settings:

SUBDIRS = .
include ../../docs/config/doxygen.am

# DOXYGEN CONFIG ################################################
DX_CONFIG = "${top_srcdir}/docs/config/doxygen.cfg"
DX_DOCDIR = sublib/docs
DX_PACKAGE_NAME = sublib
DX_TITLE = MDSsublib
DX_BRIEF = "MDSplus example sublibrary"

DX_PAGES = .. \
       index.md \
       other_page.md
                  
DX_EXCLUDE_PAGES = \
               excluded_from_doxy.h \
               other_excluded.c \
               
DX_TAGFILES = docs.tag
MOSTLYCLEANFILES = $(DX_CLEANFILES)

# TARGETS ########################################################
all: html    
html: doxygen-run
pdf:  doxygen-pdf
install-data-local: doxygen-install





All documents are generated from the code found in DX_PAGES list, we assumed
here that the actual code was in the parent directory “docs/..” and two further
\em .md pages of documentation were defined.

The index.md file is mandatory and represents the \em MainPage section of the
documentation. Here we use to define an anchor to this manual that can be
referenced within other libraries. The name this anchor should be uniform with
\em “name”_manual pattern. So index of “sublib” will be:

anchor sublib_manual

Indroduction
------------
sublib is a sub library of MDSplus. MDSplus is a set of software tools for 
data acquisition and storage and a methodology for management of complex 
scientific data.
MDSplus allows all data from an experiment ... bla bla ...

.. you can ref to other pages or code symbols with \ref command    
.. or can ref to other manuals or pages with \subpage command


a link to the main documentation page can be added in this way:

\note For a general description of the overall MDSplus framework please refer
      to \subpage mdsplus_manual "MDSplus manual"







2) Add tag files

The way doxygen can link among different libraries is the tag description.
For a reference of doxygen Tags and exterlan linkage see http://www.doxygen.org

Tags are usefull as they can keep references of the code symbols among the
built libraries. \image html img/search_tips.png

Each time MDSplus build a documentation it also build a special target called
“build_tag” that write tag information relative to current project inside the
/docs/dtags special directory. The tag filename is the name of the library plus
“.tag” extension. In addition the generation scripts also adds a line, containing
the tagfile name and the docs location, in the “taglist.txt” file.

Once the code has been generated

Now all other libraries that wants to include external symbols must define in
the variable DX_TAGFILES a “grep” string pattern that uniquely identifies the
taglist.txt entry.

In the “sublib” example above the docs.tag entry identifies the docs main manual
form the tag name.



3) Link library from MDSplus main manual

The main docs manual has a special Makefile.am script that has to account the
new library. Let us open the ${top_sourcedir}/docs/Makefile.am and see how
sublib would be added:

SUBDIRS = \
      ../mdstcpip/docs/ \
      ../mdsobjects/cpp/docs/ \
      ../sublib/docs \
      .
# ^^^^^^^^ sublib directory added here

DX_PAGES = index.md \
           lib_mdsip.md \
           lib_mdsobjects.md \
           lib_sublib.md \
           use_docs.md
# ^^^^^^^^ adds lib_sublib.md to describe sublib library in main documentation

DX_TAGFILES = mdsip.tag \
              mdsobjects/cpp/docs
              sublib.tag
# ^^^^^^^^ adds sublib.tag file so main docs can refs to new library symbols





In this way the main documentation can brawse all sub libraries symbols and can
access pages and anchors .. usually in the main index.md there is a link to the
sublibrary MainPage ( \subpage sublib_manual in this case ).




Launch the document generation

So here we go, we have the new library ready and we can launch the generation of
the code. This is done using make all target in the docs directory

make -C sublib/docs html
make -C sublib/docs pdf





It generates the tags and the html documentation you will find in sublib/docs/html/index.html

If you want to build all MDSplus documentation you can run make from main docs
directory:

make -C docs 





and to have it installed to the prefix target dir

make -C docs install







Prevent Doxygen intrusion

Sometime the excessive doxygen detail on code leads to an unreadable documentation.
To prevent it reading a selection of the code a special define was implemented.
Here is an example:

#include <iostream>

/// This code will be documented
int docfunc() {}
       
#ifndef DOXYGEN // hide this part from documentation    
int nodoc() {
  // this function will NOT be part of documentation
}
#endif // DOXYGEN end of hidden code





\note
Hope you enjoyed this way of documenting the code … to submit an issue or to
have any further detail feel free to contact me andrea.rigoni@igi.cnr.it





          

      

      

    

  
_static/comment-close.png





_static/comment.png





_static/file.png





_static/down-pressed.png





_static/down.png





_static/up-pressed.png





_static/minus.png





_static/plus.png





nav.xhtml

    
      Table of Contents


      
        		
          Introduction
        


      


    
  

_static/up.png





_static/ajax-loader.gif





_sta